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Preface

This report is a collection of material that has been used
in courses on search, detection and localization modeling. Its
organization follows to some extert material by S. M. Pollock in
Selected Methods and Models in Military Operations Research which
is listed in the report bibliography. The report is not intended
to be a text on these subjects. In particular, in some areas it
does not provide the depth of coverage that is found in the book
Search and Detection by Alan R. Washburn which is cited in this
report as Reference 22.

in the second revision, some typographical and other errors
have been corrected and some changes have been made to several
sections of the report.

Ace2ssionl For
[kiTI-S- G-RA&I
DTIC TAB
Unannounced -
Justiftoati •

Distribution/"
Avallability Codes

IAvR~h and icr

Dist Special

/



dr1

Table of Contents ,

-. I) Detection Models and Signal Detection Theory' 1

IL.l)Decision Criteria, 4

III. 3)Three Binary Detection Models' 7

IV. '-General Detection Models- 13}J

V. 'Signal-to-Noise Ratio Detection Models) 15

VI. .>General Encounter Models, 18

VII. '>Three Signal Excess Encounter Models 22

VIII.ýIStraight Line Encounters 30

IX..'zTwo Intermittent Signal Encounter Models) 32

X. ,A Random Search Model- 35
j

XI. )Ladder and Barrier Search Models 40

XII.I(A Target State Estimation Procedure, 46

XIII.15,Position Distributions That Change with Motion 50• )

XIV.1- Position Distributions That Change with Search '-7 L- 56

XV.!' Search Models and Search Theory. 60

References 65

Bibliography 68



I. Detection Models and Signal Detection Theory

Signal detection theory is the basis for analyzing the

detection models that are described in this report. In signal

detection theory, the decision making portion of a detection

system is called the receiver and a detection experiment is the

observation by a receiver of input data generated during some

time interval. The data that is related to a target is called

signal. The data that is not related to the target is called

noise. In general, the target data is associated with a

localization region that in some cases is called a resolution

cell. When a detection experiment is performed, either the event

H0 = (the receiver input is noise) or its complement

H1 = (the receiver input is signal and noise) will occur. In

the first detection models that are described here, after

analysis of the input data by a receiver, either the event

Do =(the receiver decides the input is noise) or its complement

D1 = (the receiver decides the input is signal and noise) will

occur. Detection models for which D1  is the complement of Do

are called binary detection models or forced choice detection

models. Four events which are important in binary detection

models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is

associated with a receiver that can be modeled using a binary

detection model. The problem is this: Under what conditions

should the event D1 occur? That is, under what conditions

should a receiver decide that the input data indicates a target
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was present in an observed localization region either at the time

or prior to the time of the observation?

H0  H1

Do Do n Hu DO n H1

Dl nD1 NH 0  D 1 n H1

Figure 1. Four events of importance in binary detection models.

In the detection model descriptions that follow, the

following notation and terminology are used: Pf = P(DIIH0 ), the

probability of D, given Hn, is called the false alarm

probability; Pd = P(D 1 1H1 ), the probability cf D1 given H1 ,

is called the detection probability and P = P(HI), the

probability of Hl, is called the prior probability. It is the

probability that a target will be in the localization region when

the input data is generated.

In the detection models, the input to a receiver is

determined by a stochastic process that has the following

characteristics: It is a random noise process when there is no

target data and it is a random noise process plus a signal

process when there is target data. Although the receiver input

process in some cases might appear to be determined by a

continuous parameter stochastic process, because of the finite
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amount of information (unique data) contained in a bounded

sequence of finite length, a discrete parameter stochastic

process is sufficient to determine the receiver input in these

cases. This is establishea formally by the stochastic sampling

theorem. Consequently, in these models, the input to a receiver

is determined by a sequence of random variables Y1 , "" ,Ym and

an observation yields a sequence of values yl,--.y-m

Three detection models are described in Section III. In the

first model, the signal process is a deterministic process. In

the second and third, the signal process is a random process. To

define a random noise process or a random signal process, only

the joint distribution of the finite sequence of random variables

that determine the process needs to be specified. If the sianal

process is a deterministic process. the signal values can be

determined before an observation is performed. To define the

process in this case, only these values need to be specified.

3



II. Decision CritEria

To simplify the discussion of decision criteria and

decision rules, a receiver's input will be assumed to be

determined by a single decision random variable Y. In this

case, the input process in determined by the conditional

distribution function Fy(yIHo) when the input is noise alone

and by the conditional distribution function Fy(ylHl) when the

input is signal plus noise.

The condition that a receiver's input is required to

satisfy in order that the event D1 will occur can be specified

in terms of a decision rule. For the assumed case, a decision

rule is a rule which determines for every observable value of Y

the decision that the receiver is to make. The decision rule can

be considered to be a function O(y) which relates each

observabli value y to onfe or the other of the following two

commands: do = "decide that the receiver input was noise" and

di = "decice that the receiver input was signal and noise".

Choosing a decision rule O(y) defines a set n of observable

values of Y such that the event D1 = { Y e ). I

The problem which was considered in Section I can now be

restated in the following way: What criterion should be adopted

in order to determine a decision rule or, equivalently, its

corresponding set fl ? A desirable characteristic for a criterion

is suggested by the following argument: Consider the odds in

favor of H1 given y is observed. That is, consider
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P(HIIY = y)/P(HoIY = y). One might expect that y would be a

member of the set 0 if and only if y made this ratio equal to

or greater than some value k. But this is equivalent to defining

1 as follows: 0 = ( y : L(y) a K ) where L(y) is the

likelihood ratio associated with an observed value y and K is

a constant related to the constant k. This suggests that

choosing an optimum criterion is equivalent to choosing an

optimum value for K. Four specific decision criteria are defined

next ii, terms of K. For each criterion, n has the above

form. But for each criterion the choice of K is different.

The decision criteria are:

1. The Neyman-Pearson Criterion: Choose h so that Pd

is a maximum subject to the constraint that pf • a where a is

a specified value. For a continuous decision random variable,

the constant K is chosen so that pf = a.

2. The Bayes Criterion: Choose 0 so that the expected

cost of a receiver's decision is a minimum. For a continuous

decision random variable, K = [(c 1 o-c0o)/(c 0 1 -c 1 1 )].(l-P)/P if

Cl0 > coo and ce, > c.1  where cij is the cost of Di n Hi.

3. The Ideal Observer Criterion: Choose 0 so that the

probability that the receiver makes an incorrect decision is a

minimum. K = (l-P)/P for a continuous decision random variable.

4, The Minimax Criterion: Choose 0 when P is unknown so

that the maximum expected cost of a receiver's decision is a

minimum. If cl 0 > coo and c 0 1 > c1l, then
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K t (cIo-coo)/(co0-clI)1](I-P*)/P* for a continuous decision

random variable. Here, P* is the value of the prior probability

P that would make the expected cost of a receiver's decision a

maximum if P were known and the Bayes Criterion were used.

If a model which specifies the conditional distributions

Fy(yIHO) and Fy(yIH1) and a decision rule are adopted, then

the value of pf and the value of Pd are determined. This

pair of values (PfPd) is called a receiver operating point.

If the decision rule results from using a likelihood ratio

criterion such as one of the four listed above, then it will

involve the parameter K since n = (y: L(y) Ž K). And, for a

given value of K, since 0 uniquely determines the pair

(PfPd), a single operating point results. By varying K, a set

of operating points can be generated which determines a receiver

operating characteri5tic curve or R.e curve.•-- -- r•-------.--c

curves can be produced by changing either one or both of the

conditional di-,.ributicns which implies either a change in the

signal process or a change in the noise process.

A decision rule which results from using a likelihood ratio

criterion in a model in which the input process is determined by

a set of in random variables can be expressed in terms of a set

n as follows: 11 ( (Yl, -- ,yM) : L(yl, --" ,YM) > K ) where

K is specified in the same way that it is when m = I.

6



I11. Three Binary Detection Models

Three detection models are examined in this section.

For the firat two detection models, the input stochastic process

for an observation is defined hy a time sequence of continuous
4

random variables. The random variables represent a sample from a

continuous parameter stochastic process which is sampled at times

such that the random variables are independent. For the third

detection model, the input stochastic process is a counting

process and it is defined by a single discrete random variable

that is equal to the number of events that are counted during the

observation.

Model I: In the first detection model, a sampled noise

value is a value of a normally distributed random variable with

mean zero and with known variance a'. And a sampled signal

value is a known value of a deterministic variable. Thus, the

input process corresponding to an observation consists of some

number m of independent normal random variables Y1 , -- ,Ym

each with variance c'. And, for i = 1,2, -.. ,m, when a signal

is not present the mean of Yi is zero and when a signal is

present the mean is si. The result of using a likelihood ratio

decision rule in the model can be expressed in terms of a random

variable Z. This random variable is called a crosscorrelation

statistic and it is defined by Z = Z si.Yi where the sum index

J. = 1,2, -- ,m here and in the remainder of this section.

However, it is more convenient to express the result in terms of

a statistic V which is defined by V = Z/oz. In terms of this

7



random variable, the conditional probabilities pf and Pd are

given by: pf = 1 - *(v*) and Pd = 1 - *(v* - di) where I

symbolizes the standard normal cumulative distribution function,

v= (1/Oz).(0 2 ln K + (1/2) S si), is determined by the decision

rule and d = Z si/a is called the detection index.

Often, the input stochastic process represents a quantity

whose square is proportional to power. In such a case, the

average receiver input power is the random variable Z Yi/m. If

a signal is not present, the expected average receiver input

power is N = Z a'/m = o" where N is called the noise. The

aver'age receiver input signal power is S = E si/m where S is

callec the signal. In these terms, d = m.(S/N) where S/N is

called the signal-to-noise ratio.

If a receiver's input can be considered to be a time

seyuerxce of continuous voltage values such as in the case of a

sonar receiver, in some cases a frequency representation can be

used that invclves the concept of receiver bandwidth. In these

czases, the noise process is assumed to be such that m = t/St

whsre t is the integration time (the duration of an

observmtion) and 4t is the time between samples with

St = 1/[2(BvJ)] where BW is the bandwidth and St is

deter-ined by the sampling theorem. This implies that the

deftcction index can be written as d = 2t.(BW)-(S/N). By

defining No as the power spectral densiiy where No = N/BW, the

detection index car also be written as - 2t'(S/N0 ).
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In Reference 2, the conditions required by the first model

are called Case I and in the following sections the first model

is called the Case I model. A receiver that processes data

such that it would implement a likelihood ratio decision rule

under the conditions of the first model is called a matched

filter or crosscorrelation detector. If the description of the

input noise is adequate, a Case I model can be used to obtain an

estimate of an upper bound on a detection system's performance,

since all the information necessary to define the signal is

assumed to be known.

Model I1: In the second detection model, a sampled noise

value is a value of an independent normal random variable with

mean zero and with known variance a'. And a sampled signal

value is an independent random variable with mean zero and with

known variance a,. Thus, the input process corresponding to an

observation consists of some number m of independent normal

random

variables Yl,...,Ym each with mean zero and each with variance

a' when a signal is not present and with variance a' + a' when

a signal is present. The result of applying a likelihood ratio

decision rule in this model can be expressed in terms of a

statistic X which is defined by X = Z Yi. When a signal is

not present, the statistic X/IN has a chi-square distribution

with m degrees of freedom. When a signal is present, the

statistic X/(N+S) has a chi-square distribution with m

degrees of freedom. So, in termns of these statistics, the

9



conditional probabilities pf and Pd are defined as follows:

pf= P(XA : x*/N) and Pd = P(X1 a (x*/N).[1/(I+S/N)])

where Xm is a chi-square random variable with m degrees of

freedom, x* is a number which is determined by the decision rule

and S/N is the signal-to-noise ratio. A receiver that would

implement a likelihood ratio decision rule under the conditions

of the second model is called an energy detector or square law

detector.

The mean of a chi-square random variable with m degrees of

freedom is m and the variance is 2m. By the central limit

theorem, as the number of degrees of freedom of a chi-square

random variable becomes large it can be approximated by a normal

random variable with the same mean and variance. Hence, for a

sufficiently large sample size m or equivalently, for a

sufficiently large time bandwidth product t-(BW), the

conditional probabilities pf and Pd can be approximated by

pf = 1 - 0(v*) and Pd = 1 - f{(I/(l+S/N)].(v* - di)) where the

threshold value v* = (x* - ma')/[(2m)1a'] and d = t-(BW)(S/N)'

if the concept of bandwidth is applicable. If, in addition, the

noise N is significantly larger than the signal S, that is, if

t-(BW) >> 1 and S/N << 1, then pf and Pd can be

approximated by: pf = 1 - *(v*) and Pd = I - #(v* - di).

In Reference 2, the conditions required for this

approximation are called Case II and in the following sections

the limiting form of the second model is called the Case II

model.

10



Model III: In the third detection model, a sampled ncise

value and a sampled signal value are values of independent random

variables that are determined by independent Poisson processes

that is observed for a time interval t. The noise process is

characterized by a counting rate a, the signal process is

characterized by a counting rate a. and the noise and signal

processes are additive. This implies that when the input is

noise alone, the input is a Poisson random variable with

parameter a-t and when the input is signal and noise, the input

is a Poisson random variable with parameter (a + as)-t.

For a likelihood ratio decision rule, pf = 1 - P(y*;a-t)

and Pd = I - P[y*;(a + as).t] where y* is a threshold value

that is determined by the decision rule and P(y;8) represents

the Poisson cumulative distribution function with parameter e.

When e is large, the cumulative distribution function can

be approximated by the cumulative distribution function of a

normal random variable that has the same mean and variance.

Using this approximation for cases where a-t is large, since

both the mean and variance of a Poisson random variable are equal

to e, pf 1 - 0(v*) and Pd = 1 - 0([l/(l + as/a)i)(v* - di)}

where v* (y* - at)/(at)i and d = at.(as/a). In addition,

if the signal counting rate is significantly smaller than the

noise counting rate, that is, if aot >> 1 and a5 /a << i, then

pf and Pd can be approximated as follows: pf 1 - #(v*) and

Pd = 1 - #(v* - di).

11



The third detection model might be used to describe a

receiver whose input for an observation is the number of photons

counted by a radiation detector in situations where a.t, the

expected number of counts when no signal is present, is of the

order of thirty or more.

When a likelihood ratio decision rule is used in the three

models discussed above, for the first model and under limiting

conditions for the second and third models, the following result

is obtained: pf = 1 - f(v*) and Pd = I - 0(v* - di) where the

definition of v* depends on the noise power N for the first

and second models. For a sonar receiver described by the first

r model, that is, by the Case I model: d = 2t.(BW)(S/N). For a

sonar receiver described under the limiting conditions for the

second model, that is, by the Case II model, d = t.(BW)(S/N)l.

So, in either a Case I model or a Case II model of a sonar

receiver, the detection index d is a function of the time

bandwidth product t.(BW) and the signal-to-noise ratio S/N.

Since sonar equations relate S/N to system, target and

environmental parameters, a sonar equation can be used to relate

S/N to these parameters in a model of a sonar receiver.

12



IV. General Detection Models

The detection models that have been considered to this

point are based on binary detection theory. After each

observation, a receiver decides either that the input

corresponding to the observation was noise or else it decides it

was signal plus noise. However, in some detection systems this

decision is delayed. In a computational sense, a model of such a

detection system is generally complex relative to a binary

detection model. To illustrate this, consider an active sonar

system whose receiver includes an operator. Suppose the

probability that the operator will detect a target echo has been

determined in a laboratory experiment in which the operator was

required to decide after each input corresponding to a resolution

cell that either the input was a target echo (signal) and noise

or the input was noise alone. In addition, suppose that under

operational conditions the operator normally delays this

decision. Then, in general, the probability that the operator

will decide that the input corresponding to a resolution cell

that contains a target is a target echo and noise will not be

equal to the probability of the event in the forced choice

experiment. And, in addition, the probability that the operator

will decide the input corresponding to a resolution cell that

does not contain a target is a target echo and noise will not be

equal to the probability of this event in the forced choice f

experiment. Consequently, in general. the value of both Pd and

13i



pf for an operational environment will be different than that

for the laboratory environment.

One modeJ that has been proposed to deal with this kind of

situation defines the event that a receiver decides that the

input corresponding to a resolution cell is signal and noise to

be equivalent to the event that out of n consecutive

observations at least k of them would result in the decision

that the input was signal and noise in a forced choice

experiment. The model is said to be based on an k--out-of-n

detection criterion. With this criterion, the probability that a

target will be first detected on the jth observation can be

found as follows: Determine the 2J sequences of forced choice

responses that could result for a sequence of j consecutive

observations. Next, determine the probability of occurrence for

each sequeiice that fiivt zatisfies the k-o:ut-o- detecti0Oi

criterion on the jth observation. The probability of first

detection on the jth observation Is equal to the sum of these

probatilities. The cumulative probability of detecticn at the

jth observation is the sum of the probabilities of first

detection on the ith observation for i = 1,2, .-. ,j.

14



V. Signal-to-Noise Ratio Detection Models

In some radar and sonar detection models, for a

specified value of pf, a minimum acceptable value of Pd is

defined. This minimam acceptable value of Pd and the specified

value of pf define what can be called a minimum acceptable

signal-to-noise ratio (S/N)m if Pd is a nondecreasing

function of signal-to-noise ratio. In some sonar detection

models, (S/N)r, in decibels is called the detection threshold

DT. In symbols, DT = 10 log(S/N)M. If the minimum acceptable

value of Pd is .5, then DT is usually called the recognition

differential RD. The difference between the signal-to-noise

ratio in decibels and RD (or DT) is callel the signal excess

SE. In symbols, SE = 10 log(S/N) - RD.

One interpretation of signal excess is that for a

localization region containing a target detection occurs with

probability one if SE Ž 0 and with probability zero if SE < 0.

This interpretation provides the basis for defining detection in

the three encounter detection models that are discussed in

Section VII. A more consistent interrretation of signal excess

is: If SE Ž 0, then the probability of detection Pd is

greater than or equal to the minimum acceptable value (.5 if

recognition differential RD is used to define signal excess).

For cases where Pd increases rapidly with signal excess in the

neighborhood of zero signal excess, the two interpretations may

be operationally equivalent. For a discussion of this point as

15



well as a discussion of an operational case in which receiver

decisions are delayed, see Reference 3.

Signal excess (signal-to-noise ratio) detection models

provide a basis for general detection models, in particular,

models that describe nonstationary noise and signal proces-es and

randomly changing decision rules. This is iliustrated by the

models described in Section VII. In addition, signal excess

models provide a basis for delayed receiver decision models.

This is illustrated by the active sonar detection models in both

Reference 4 and Reference 5 that are based on a k-out-of-n

detection criterion. In all of these models, the signal-to-noise

ratio and the recognition differential are random variables.

Using X(t) to represent a random variable corresponding to

an index time t and a subscript to identify the random variable

in such models, for a passive sonar receiver, the signal-to-noise

ratio in decibels associated with a decision at the index time

is: XSL(t) - XTL(t) - [XNL(t) - XDI(t)]. In this expression,

SL represents source level, TL represents transmission loss,

NL represents noise level and DI represents directivity index.

Since signal excess SE is defined to be the difference in

decibels between the signal-to-noise ratio and the recognition

differential (or detection threshold), it too is a random

variable and, for any decision time t, one can write:

(1) XSE(t) XSL(t) - XTL(t) - [XNL(t) - XDI(t)] - XRD(t).

The distributions of he random variables on the right side of

Equation 1 determine the distribution of the signal excess. In

16



the passive sonar detection i.odel described in Reference 6,

XSL(t), XRD(t) and, in effect, XNL~t) are normally

distributed r.:ndom variables while XTL(t) is a uniformly

distributed random variable. In the three signal excess models

that are described in Section VII, all of the random variables in

Equation 1 are normally distributed.

It is sometimes convenient to write Equation 1 as follows:

(2) XSE(t) = SE(t) + X(t).

In Equation 2, SE(t) is the expected value of the signal excF.ss

determined by the following expected value equation:

(3) SE(t) = SL.(t) - TL(t) - [NL(t) - DI(t)) - RD(t)

where each term on the right represents the expected value of the

indicated random variable and X(t) is a random variable that

determines the stochastic character of the signal excess. Since

SE(t) is the miean of XSE(t); by Equation 2, the mean of X(t)

is equal to zero and the standard deviation of X(t) is equal to

the standard deviation of XSE(t). If G represents the

standard deviation of XSE(t) and the random variables on the

right side of Equation 1 are statistically independent, then

a = 0SL + C"L + ONL + 0 D1 + CRD" This relation has been used to

determine a standard deviation for the signal excess in

operational models.

17



VI., General Encounter Models

A basic problem associated with search modeling is that

of determining the probability that a target will be detected by

a detection system during an encounter with one or more detection

systems. In the encounter models that are considered in this

report, during a search, observations are made of a series of

localization regions. The probability of detection on an

observation is P(D 1 n HI). The probability of a false alarm on

an observation is P(D 1 n H0 ). In these models, the time to

resolve a false alarm is ignored. However, Pd and pf are

assumed to be determined by some criterion such that pf is an

operationally reasonable value.

Using the order number of a decision rather than its time as

an index relative to detection decisions for localization regions

that contains a target and a random variable N to epresenit the

decision order number at which detection first occurs, the

probability of detection during an encounter can be written as:

P(N 5 n) = P(N < m) + P(N = M+1) 4- -.. + P(N = n) or equally as

P(N S n) = 1 - [1 - P(N ! m)]-(l - gm+l) ... (1 - gn) where

gi = P(N = iWN 5 i-1) is the probability of the event detection

at the ith decision conditioned on the event no detection at an

earlier decision and 1 5 m 5 n. The second expression is

generally of greater interest than the first expression, since

gi can usually be more directly related to operational

parameters such as range and environmental conditions that

determine a target's detectability than can P(N i).
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With a time rather than the order number to index a decision

and a random variable T to represent the time index at which

detection first occurs, P(N S n) becomes P(T S tn) with

P(T S tn) = 1 - (1 - P(T S tm)].[l - g(tm+j)] ... [i - g(tn)]

where g(ti) P(T tilT 5ti.I).

If g(ti) << 1 for i = 1,2, --- ,n, then, to a first

approximation, ln(l - g(ti)) = -g(ti) for 1 = 1,2, .-- ,n and

P(T 5 tn) = 1 - [1 - P(T S tl,)]-exp[-Z g(ti)]. This follows

since P(T S tn) = 1 - [I - P(T S tin)].exp[Z ln[l - g(ti)] where

the sum index i = m+l, ... ,n. A continuous analog to this

approximation can be used to describe an encounter for which

g(ti) << 1 for i = m,m+l, --- ,n and decisions during the

encounter can be considered to occur continuously. That is, the

time of an observation corresponding to a decision and the time

between decis w e Are t negligible reI 0ati ,%re t -- 4h t - - f th4

encounter.

The analog can be developed as follows: First, let 6t be

the time between decisions, then ti = i.St and the probability

of detection P(T 5 tn) = 1 - (I - P(T ! tm)].exp[-E r(ti)-6t]

where i(ti) = (l/6t)-g(ti) is a detection rate function

(a probability of detection per unit time) and, in terms of St,

the probability g(ti) = P[T = i.6tIT S (i-l)-&t].

If T is considered to be a continuous random variable, the

expression for P(T S ti) above indicates that the sum in the

exponent should be replaced by an integral whose integrand is a

continuous function i(t). If i(t) can be determined, then,
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with g(ti) as a guide, the cumulative probability of detection

P(T : t) can be defined by:

(4) 1(t) = lim {(I/St).P(t < T : t+6tlT 5 t) }

where the limit is for bt approaching zero. Equation 4

implies the differential equation: dp(t)/dt = [I - p(t)].'(t)

where p(t) = P(T 5 t). A solution to this equation is:

tn
(5) P(T • tn) = 1 - (I - P(T S tm)]'exp[-jtm ¶(t)dt]

where t is the time index for a decision during an encounter, tm

is some time during the encounter and tn > tm. A Y(t) that is

based on a visual detection model is described in Reference 7.

If the detection capability of a detection system is assumed to

depend on a target's position relative to the detection system

during an encounter but not to depend on the clock time, then the

time index of a decision can be a relative index that determines

the target -osition that is agssociated with a decision rather

than the clock time associated with the decision.

The above results apply to the case of an encounter between

a target and a collection of detection systems. However, if the

detection systems are not collocated, it is generally convenient

to describe encounters of this kind in terms of encounters

between the target and the individual detection systems. In

either case, if the event target detection for a detection system

is not independent of the event for other detection systems, then

in order to describe this in an encounter model the correlation

between the input to the detection system and the inputs to the

ether detection systems must be specified. This has been done in
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some models as follows: First determine the probability of

detection for each system acting alone. Det Pi be the

probability that the ith system detezts the target during the

encounter under this condition. Next, consider two cases: In

the first case, the random factors that determine detection for a

system are independent of those that determine detection for the

remaining systems. In the second case, the random factors that

determine detection for the systems are completely dependent. In

the first case, the probability that at least one system detects

the target is given by: PI = ] - (I - P 1 )-(l - P 2 ) ... (1 - Pn)

where n is the number of detection systems involved. In the

second case, the probability that none of the systems detect the

target is given by: 1 - PD = 1 - Pm where P. Ž Pi for

i = 1,2, .-- ,n since if the mth system does not detect the

target, none of the remaining systems will detect it. The

ro..babili.t-y t.a. at c c..c zyztcm det4cctcz thc targct iJ: gvcn

by: P : Q-PD + (1 - a)-PI where a determines the degree of

correlation and 0 S a 5 1. A way to determine a value for a

is described in Reference 8.
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VIa:. Three Signal Excess Encounter Models

in the three models described in this section,

detection is detined in terms of signal excess as it is in

Section V. Each model determines a cumulative probability of

detection for a target in an encounter with a passive sonar

system. An observation in the models is indexed by time and the

index can usually be considered to be the time at the end of the

observation. During an encounter, observations are made of a

setries of localization regions. A false alarm can occur for a

localization region that does not contain a target during an

observation since the value of RD (or DT) is determined by

some specified false alarm probability. However, in effect, the

time to resolve a false alarm is zero.

To determine signal excess in the models, it is convenient

to use Equation 2. For each decision in an encounte-, there is a

random variable X(t) de.ined by Equation 2 that d,.termines the

random character of the signal excess. For a sequence of

decisions, the set of these random variables ordered by their

time index constitutes a stochastic process. And the joint

distributions of these random variables determines the nature of

the stochastic process. In the three encounter models described

,n thio section, the stochastic process is called a lambda-sigma

-lump process. The time series that are generated by lambda-sigma

jump pocesses are represented by the plot in Figure 2 below.

Thr jumps in the time series occur at times determined by a

Poisson process with a mean jump rate lambda. This implies that
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the time between jumps is a random variable with an exponential

distribution and that the expected times between jumps 7 is

equal tc the reciprocal of lambda. The time series that are

generated by lambda-sigma jump processes are represented by

Figure 2 below.

dB

I 1time

Figure 2. A time series representing a realization of a lambda-

sigma jump process. On the plot, a in dB equals one unit on

the vertical axis and i equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring

random variables are equal unless a jump has occurred between

them. When a jump occurs, the first random variable after the

jump is normally distributed with mean zero and variance c' and

it is independent of all the random variables before the jump.

Conditioned on a jump pattern, this random variable and all the

random variables between it and the next jump are dependent and
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the correlation coefficient between any pair is one. That is, if

the value of the signal excess is known at some time, then all of

the values between the last jump before that time and the first

jump after that time are also known. However, since the jumps

occur randomly, knowing the value of the signal excess with

certainty at some time does not determine the values of the

signal excess with certainty at neighboring times. In the

unconditioned case, the correlation coefficient between the

random variables X(t) and X(t+i) is equal to l/e. For this

reason, ,* is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump process is

based more on past practice than on experimental justification.

In this regard, see Reference 9. By referring to Equation 1, it

can be seen that the lambda-sigma jump process is determined by

the sum of 4te stochastic processe- ta et "-.ne the random

variables on the right side of this equation. Although the sum

of a collection of normal random variables is a normal random

variable, the sum of a collection of lambda-sigma jump processes

is not a lambda-sigma jump process. This suggests that if the

lambda-sigma jump process does adequately describe the

variability of the signal excess, then the majority of the

variability of the signal excess may be due to a single one of

its elements. For example, transmission loss.

In the three encounter models described belctw, detection is

defined in terms of signal excess as described in Section IV and

decisions are indexed by a time that can usually be considered to
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be the time of the decision. During an encounter, observations

are made of a series of localization regions. For localization

regions that do not contain a target, the signal observed during

an observation of the region is zero. In the models, the time to

resolve a false alarm is zero. However, false alarms are not

ignored in that the value of RD (or DT) is determined by some

specified false alarm probability. Consequently, although the

time to resolve a false alarm is zero, the cost associated with a

false alarm is not zero.

The First Passive Sonar Encounter Detection Model: This

model describes an encounter in terms of a series of decisions

with each decision based on the signal excess XSE(t) at a time

corresponding to the end of an observation. The observations are

of equal duration and the integration time that determines the

recognition differential is equal to the duration of the

o1b-svation-. in the moel, XSE(t) iJ determined by a lambda-

sigma jump process. For an encounter in which SE(t) is

unimodal and in which the time of the single maximum is prior to

the end of the encounter, it is shown in Reference 10 that the

probability p that detection will occur during the encounter

is given by the following equation:

(6) p 1 - [(1 - Pc)/(' - .p0 )]'H l - P-pl) --- (I - P"Pm)

where 0 1 - exp(-6t/i) and Pi = O[SE(ti)/a] for i = 1,2,

,m. Here, 8t indicates the duration of an observation and

0 indicates the standard normal cumulative distribution function

as before. The integer c is the index of the decision time tc
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for which SE(tc) is greater than or equal to SE(ti) for any

time ti and t, : tc < tm.

As T approaches zero, p approaches one and Equation 6

approaches this form:

(7) p = 1 - (1 - Pi) .". (1 - Pm)-

In this limit, the signal excess random variables are all

independent. Note that Equation 7 applies without the condition

that SE(t) be unimodal.

As i approaches infinity, p approaches zero and

Equation 6 approaches this form:

(8) P = PC-

In this limit, the correlation coefficient between any pair of

signal excess random variables is equal to one. Note that

Equation 8 applies without the condition that SE(t) be

unimodal. Eauation 8 defines a complete dependence encounter

model.

The Second Passive Sonar Encounter Detection Model: This

model is in a sense a third limiting form of the first passive

sonar encounter detection model. In this limit, the time between

decisions approaches zero. However, in this limit the

integration time that determines the recognition differential is

not equal to 6t and it does not approach zero. It is, in

effect, chosen by the user of the model through the user's choice

of the value for the recognition differential. For an encounter

that begins at tl and ends at t2 and for which XsE(t) is

deter-mined by a lambda-sigma jump process and SE(t) is
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unimodal, it is shown in Reference 10 that for this limit,

Equation 6 has the following form:

rt2
(9) p = 1 - (1 - p(tc)]lexp[-(I/¶)"Jtl p(t) dt]

where p(t) = O[SE(t)/a] and where now tc is the encounter

time such that SE(t.) is greater than equal to SE(t) for any

other encounter time t and tl S tc : t2.

The Third Passive Sonar Encounter Detection Model: This

model describes an encounter between a target and a passive sonar

detection system in which detection occurs during an encounter if

the average value of the square of the continuously observed

signal-to-noise ratio over a time interval of length u is

greater than or equal to the square of the signal-to-noise ratio

that determines the recognition differential for an integration

time equal to u. With R(s) the random signal-to-noise ratio

at a time s and Rm(u) the random signal-to-noise ratio that

determines the random recognition differential for an integration

time u, detection during an encounter occurs at the first time

t that the following inequality is satisfied:

(10) (1/u) ft-u 1R(s)/Rm(U)]' ds Ž 1

where the time origin is chosen so that t a 0 and where the

integration time u = t for t < to and u = to for t Ž to

where to is a maximum integration time. The random integrand

in the inequality is related to the random signal excess at the

time s for an integration time u. The relation is:

(11) 10 log [R(s)/Rm(u)]* = 2[SE(s;u) + X(s)]
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where SE(s;u) is the expected value of the signal excess at a

time s for an integration time u and X(s) is the random

component of the signal excess at the time s. In the model,

X(s) is determined by a lambda-sigma jump process and SE(s;u)

is determined by an expected value sonar equation with a

recognition differential RD(u) = 10 log r,(u). Here, rm(t) is

the value of the signal-to-noise ratio that gives a probability

of detection equal to .5 for an integration time t and a

specified probability of false alarm pf. With the signal

detection process described by a Case II signal detection model,

the detection index necessary to give the required operating

point (pf,.5) is related to the integration time t and the

signal-to-noise ratio rm(t) by:

(12) d = u.(BW) [rM 1)]1

where BW is the bandwidth of the receiver. For a spectrum

analyzer, BW would be the bandwidth corresponding to a given

frequency resolution and d would be the detection index

required in order to be at the operating point (pf,.5) for a

signal that was contained within a bandwidth BW. Since d in

Equation 12 must be the same for t = u and t = to,

(13) RD(u) = 5 log(t 0 /u) + RD(t 0 )

where to is the maximum integration time. Then, since

SE(s;u) - SE(s;to) = RD(t 0 ) - RD(u), by using Equation 13 and

Equation 11, Relation 10 becomes:

t (1/5)[X(s) + SE(s;t 0 ) - 5 log(t 0 )]
(14) it-u 10 ds Ž 1
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where as above the time origin is chosen so that t • 0, the

integration time u = t for t < to and u = to for t Ž to

and where SE(s;t 0 ) is the expected value of the signal i:xcess

at the time s for a recognition differential determined by an

integration time to. In an encounter, detection occurs the

first time that Relation 14 is satisfied.

As is pointed out in Reference 11, the appeal of the Third

Passive Sonar Encounter Detection Model relative to the Second

and First Passive Sonar Encounter Detection Models is that it

appears to more closely describe the detection process in passive

sonar detection systems that display their processed data to an

operator in a continuous manner over a time window of duration

to. However, results reported in Reference 12 indicate that the

difference between the three models may not be significant in

some types of encounters.
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VIII. Straight Line Encounters

Suppose a target's detectability depends on its range

from a detection system and that the probability of detection is

effectively zero beyond a range rm for any target azimuth. In

this report, an encounter between the target and the detection

system is the event that the range between the target and the

detection system is less than or equal to rm. In addition,

suppose rm is small enough so that when the target and the

detection system are having an encounter they can be considered

to be moving on planes parallel to a tangent. plane to the earth's

surface at some point in their vicinity. If this is the case,

then while the target and detection system maintain a constant

course and speed during an encounter, the encounter is called a

straight line encounter.

A straight line encounter can be described in terms of a two

dimensional rectangular coordinate system whose plane is parallel

to the tangent plane to the earth. If the coordinate system is

stationary relative to the detection system with the detection

system located at the origin and is oriented so that the target's

motion is parallel to the y-axis and is in the positive

y-direction, then the target's x-coordinate during a straight

line encounter will be constant. The constant is equal to the

target's horizontal range at the closest point of approach (CPA)

on the straight line track on which the target is moving relative

to the detection system during the encounter. This range is

called the target's lateral range.
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A complete straight line encounter is a straight line

encounter that begins at a range from a detection system that is

greater than or equal to rm and continues past CPA to a range

from the detection system that is again equal to or greater than

rm. Let p(x) be the cumulative probability that a target is

detected by a detection system in a complete straight line

encounter in which the target's lateral range is x. Then the

function p(x) defines what is called a lateral range curve or

lateral range function.

Let p be the probability that a target is detected during a

complete straight line encounter. If the lateral range of a

target in a straight line encounter is assumed to be a continuous

random variable X with a uniform distribution with fx(x) = 1/a

for jxi S a/2 and p(x) = 0 for Ixj > a/2, then the

probability that a target will be detected during a complete

straight line encounter is given by:

(15) p = (1/a) p(x) dx

where the limits of integration can be used since the value of

p(x) is zero for lxi > a/2. Equation 15 suggests a measure of

a detection system's capability to detect a target in a straight

line encounter. The measure W is ca'led sweep width and

(16) W = To p(x) dx.

With this definition, Equation 16 becomes: p (i/2a).W.
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IX. Two Intermittent Signal Encounter Models

In the intermittent signal encounter models that are

described in this section, an encounter is a complete straight

line encounter, and during an encounter a target either emits a

signal (an acoustic transient) or its presence (a visible

submarine mast) is the cause of a signal at various times. Two

cases are considered: In the first case, the signals occur

periodically, the signals are of length 6t and the time between

the occurrence of signals is i where 7 > St. In the second

case, 6t = 0 (the signals are instantaneous) and the signals

occur at times determined by a Poisson process for which the

expected time between signals is equal to T. In the model, the

detectability of a target signal depends on a target's horizontal

range from a detection system, but on no other factors. If a

signal occurs while the target is within a range r, it will be

detected. For a continuous signal, the lateral range function of

a detection system for a target is: p(x) = 1 for IxI • r and

p(x) = 0 for lxi > r where the horizontal range r is

determined by the characteristics of the detection system and the

target. The geomaetry for an encounter is shown in Figure 3

below.

For intermittent signals, the length of a target's track

relative to a detection system on which a signal will be detected

is 2.(r' - x')i + w.bt where w is the speed of the target

relative to the detection system. So, a target's exposure time

during an encounter is (2/w).(r 2 
- x')0 + St.
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For periodic signals, there are two cases. In the first

case, r >_ w-(r - 6t)/2. In this case, the signals result in the

following lateral range function:

p(x) = 0 for lxi > r

(17) p(x) = 1 for jxI < {r 2 - [w.(r - 6t)/2]1 }

p(x) = [2/(w-7)].(r 2 - X')ý + 6t/T otherwise

In the second case, r < w.(7 - 6t)/2 and the middle equality

in Equation 17 does not apply.

For signals that are instantaneous and whose occurrence is

determined by a Poisson process, the signals result in the

following lateral range function:

p(x) = 1 - exp(-[2/(w.')].(rl - x2 )1 ) for jxi < r(18)
p(x) = 0 for lxi > r.

Target

r 

x

Figure 3. The encounter geometry for the two intermittent signal

models described here.
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For signals whose occurrence is determined by a Poisson

process and for which St > 0, signals can overlap. If this is

allowed, then Equation 18 can be modified to describe this case

by adding 6t/i to the term in the exponent of Equation 18 that

is within the square brackets. In particular, note that this

modified Equation 18 can be approximated by the bottom equality

in Equation 17 when (2/w.T)(r' - x*)4 + St/i << 1. This

implies that when the expected time T between signals is large

relative to the exposure time (2/w)(r' - x')i + St, the periodic

occurrence model and the random occurrence model are effectively

equivalent.
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X. A Random Search Model

A search of a region in which a target moves on a track

that consists of a number of straight segments placed in such a

way that in a limiting sense every section of the region is

equally likely to be searc.hed on a segment is referred to as a

random search in Reference 6. Representation of a search region

with the track segments that could be imagined to be the tracks

of a random search are shown in Figure 4.

! .

Figure 4. A search region and a track that could be described as

a random search track.

Two developments of a model to describe this kind of search

are contained in this section. The first development is based on

the following conditions: 1. A target is at a fixed position

within a defined search region. 2. A searcher's track is a
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sequence of straight line segments that are within the search

region. 3. The searcher's detection system is such that while on

a track segment, a rectangle is searched that is contained within

the search region, is of length equal to the length of the track

segment and is oriented so that its long axis is parallel to the

track segment. 4. The probability that the searcher's detection

system will detect a target while on a track segment with a

search rectF-ngle that does not contain the target is zero. The

probability that the searcher's detection system will detect a

ta-get while on a track segment with a search rectangle that

contains the target is p(x) where x is the target's lateral

ranc;e for the track segment and p(x) is the lateral range curve

for a complete straight line encounter lateral range x. A

representation of a search rectangle is shown in Figure 5 below.

5: Thp track seements are located in such a way that the event

that the target is within the search rectangle associated with a

track seqi,,ent is independent of the event that the target in the

search recta- gle associated with any other track segment. And

the probabiliCy of the event is equal to the ratio of the area of

the search rectangle to the area of the search region and, given

a target is within a search rectangle, its position is uniformly

distributed over the rectangle.

Condition 4 implies that the random search model is based

on the concept of a complete straight line encounter. The

definitinn oi an encounter that is intended here is that given in

Section VIt. This implies that in the random search model the
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time to resolve a false alarm is zero. However, for the model,

Pd and pf are considered to be determined by some criterion

such that pf is less than one. Consequently, although the time

to resolve a false alarm is zero in the model, the cost

associated with a false alarm is not zero. (A concise model that

accounts for the time to resolve false alarms is described in

Reference 13.) Condition 4 also implies that when a searcher is

on a track segment with a search rectangle that contains a

target, the encounter is a complete straight line encounter. And

Condition 5, which can be considered to specify a random

arrangement of the track segments, implies that when this is the

case, for the complete straight line encounter, the target's

lateral range is a random variable that is uniformly distributed

between -b/2 and b/2 where b is width of the search

rectangle (the dimension of the rectangle perpendicular to the

associated track segment).

Swept Area

Track

Figure 5. A track segment and its associated search rectangle.

that could correspond to a search with an aircraft mounted

infrared detection system.
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Based on the above considerations, the probability that a

target will be detected while a searcher is on a track segment

with an associated search rectangle that contains the target is

given by:

(19) p(x) fX(x) dx = W/b

where fx(x) = 1/b for -b/2 5 x • b/2 and fX(x) = 0 and

p(x) = 0 otherwise. Note that the left side of Equation 19

applies to any complete straight line encounter in which the

target's lateral range for the encounter is considered to be a

random variable with a distribution determined by the probability

density function fX(x). If it is not given that the target is

within the search rectangle associated with a track segment, then

the unconditional probability that the target will be detected on

the track segment is given by: (W/b).(6A/A) where SA is the

area of the search rectangle associated with the track segment

and A is the area of the search region. With 1 the length of

the rectangle, 6A = b-l and the probability becomes: (W.!)/A.

Then, since the event that the target will be in the search

rectangle of a track segment is independent of the event that it

will be in the search rectangle of any other track segment, the

probability p that a random search consisting of m track

segments will detect the target is given by:

I - [I - (W.1 1 )/A[lI - (W.1 2 )/A] ..- [1 - (W.1n)/A] where li

is the length of the ith track segment. The probability is

also given by: p = 1 - exp(E ln[l - (W.li)/A]1 where the sum
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index i = 1,2, --- ,n. If (W'1i)/A << I for i = 1,2, o.. .n,

then this expression can be approximated by:

(20) p = I - exp[-(W.J)/A]

where 1 = Z ii is the track length of the search. Equation 20

is known as the random search formula.

The second development of the random search formula is based

on Equation 5 and a detection rate for a random search given by:

i(t) = W.v(t)/A. With this detection rate and Equation 5, the

random search formula is given by:

(20a) P(T • t) = I - exp {-[W-l(t)]/A)

where l(t) is the track lergth for a random search that starts

at time 0 and ends at time t and

(20b) l(t) = o v(s)ds.

Replacing P(T 5 t) by p and l(t) by 1 gives Equation 20.

In the form of Equation 20a, the random search formula indicates

explicitly the relation between the probability of detection and

the duration of a random search. Note that Equation 20a implies

that the sweep width is independent of speed over the range of

speeds in the encounter.

Reference 14 contains an example of an application of the

method used in the second development of the random search

formula to a random search where the search region expands with

time.
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XI. Ladder and Barrier Search Models

In some barrier searches, the barrier search track is a

ladder search track relative to a reference system that moves

with the target. This fact is used in the barrier search model

development that follows the two ladder search model developments

below. The first ladder search model is referred to as an ideal

ladder search model because of the idealizations that are

involved in its description of a ladder search. The second

ladder search model is referred to as a degraded ladder search.

It can be considered to describe a ladder search track in which

navigational errors result in omissions and overlaps in coverage.

An Ideal Ladder Search Model: The model is based on the

following conditions: 1. A ladder search region is a rectangle

that contains a fixed target. 2. During a search of the region,

the searcher's detection system moves on a set of m parallel

track segments of length b separated by a distance s. 3. As

the detection system moves along a track segmetit, it searches a

rectangular strip of length b and width s within the search

region. 4. The m rectangular strips that correspond to the m

track segments completely cover the ladder search region with no

overlap. 5. If a target is within the rectangular strip

corresponding to a track segment, then there will be a complete

straight line encounter between the target and the detection

system when the detection system moves along the track segment

and the lateral range of the enconter will be uniformly

distributed across the width of the strip. If the target is not
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in the rectangular strip, then there will not be an encounter and

the probability that the target will be detected while the

detection system is on the track segment is zero.

b

IF L

Figure 6. A schematic representation of a ladder search geometry

for a case in which the ladder search track segments are

superimposed on and bisect their corresponding rectangular

Strips.

Since targets outside of the rectangular strip that

corresponds to a track segment cannot be detected while a

detection system is on the track segment because of Condition 5,

in the model, the sweep width W of a searcher's detection

system must satisfy the relation W S s . In particular, W = s

only holds when the detection system detects a target that is in

a rectangular strip with probability one for any target lateral

range. This kind of detection system is sometimes referred to as

a cookie cutter detection system. However, this terminology can
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be misleading since it suggests the detection system detects

equally well for all azimuths. But this is not a requirement on

the system in order that W = s.

The ideal ladder search model implies that if the conditions

of the model are satisfied, then the probability p that a

target will be detected by a an ideal ladder search is given by:

(21) p = W/s

where V/s 5 1. The quantity W/s is called the coverage

factor in this case.

A Degraded Ladder Search Model: The above model implies

perfect navigation in addition to other idealizations. A model

of a ladder search is given in Reference 6 that could be used

for cases in which this is a poor assumption. The model which is

referred to here as a degraded ladder search model can be

considered to describe navigational inaccuracies in terms of

omis-ions 4 n ver1aps of the rctangular strips. It can be

developed as follows: Consider a random search in the ladder

search region whose track length is equal to the search track

length required to complete an ideal ladder search, that is, a

track length 1 = m-b. The degraded ladder search model

describes the result of omissions and overlaps in a ladder search

to be such that the probability of detection for this random

search is equal to the probability of detection for the degraded

ladder search. Consequently, since the area of the ladder search

region is m's-b, for the degraded ladder search model:

(22) p = 1 - exp(-W/s).
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Here, the requirement that the coverage factor W/s • 1 for

Equation 21 can be relaxed. However, it should still be

considered as an approximate condition.

The condition that the target be fixed within the

rectangular search region is critical to both Equation 21 and

Equation 22. However, these results are also applicable to a

search for a moving target under the conditions that are

described next.

A Barrier Search Model: A target moves with a constant

course and a constant speed u. Both the target's course and the

target's speed are known by a searcher. The searcher establishes

a barrier of width b that is perpendicular to the target's

track and moves on the barrier with a speed v > u. The barric

is designed so that in a reference sy. tem relative to the target

the barrier search is a ladder search that satisfies the

con,•iA4-4 s for-a I ladder search that are given above. T a

two cases to consider: 1. The barrier is established in front of

the target. 2. The barrier is established behind the target.

From the search geometry for a barrier established in front

of the target, it can be seen from Figure 7 below that

8 = sin-l(u/v) and d = v-i where i = s/(v + u) is the time to

move from one search leg to the next. The angle 0 and the

perpendicular distance d that depend on u, v and s, and the

width of the barrier b are the quantities that are required in

order to establish the barrier operationally.
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STarget

g d

4 1'
__ - b _

Figure 7. A barrier search track shown for a barrier established

in front of the target. The track is shown in a reference system

fixed relative to the earth.

For a barrier that is established in front of a target, on(-

o t+A=rr typles--l -re--- -t- A barrier's tvye is

determined b;' the relation of the distance d to the distance

g = ut where the time t = b/(v2 - u2)½ is the time to complete

a search leg (cross the barrier). The barrier type is determined

as follows: 1. For g < d, the barrier is an advancing barrier.

2. For g = d, the barrier is a stationary barrier.

3. For g > d, the barrier is a retreating barrier.

For a barrier established behind the target, there is only

one barrier type and it is called an overtaking barrier. For an

overtaking barrier, e sin-1 (u/v) as for a barrier established

in front of the target. But, for an overtaking barrier,

7 = s/(v - u) and d = v.s/(v - u).
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Given the target crosses the barrier, the probability of

detection for an ideal barrier search is gien by Equation 21

and the probability for a degraded barrier search is given by

Equation 22 where the terminology refers to the nature of the

ladder search in the reference system moving with the target.

A discussion of an application of these two equations to a search

for a magnetic anomaly target is given in Reference 15.
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XII. A Target State Estimation Procedure

A target state estimation procedure based on bearing

observations is developed in this section that generates poirt

estimates of a target's position and velocity vector coordinates

in a rectangular coordinate system. The procedure is based on a

model in which bearing errors are unknown and are not determined

by random variables with known distributions. Because of this,

confidence regions for the estimates are not generated by the

procedure. However, for a moving target, it illustrates general

characteristics of bearings only target motion analysis (TMA).

The Yodel is defined as follows: 1. The target moves in a plane

with a constant but unknown course and speed. 2. Observations of

the target are made from known positions at known times. 3. The

observations provide only target bearings with unknown errors.

The model geometry is shown in Figure 8.

Sydi 
= ri'sin 

(fi - ei)

[xt(i),yt(i)] estimate

ri range estimate
observed Oi
bearing 1i i bearing estimate

[xo(i),Yo(i)] observer

x East

Figure 8. The geometry of the target motion analysis model.
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The procedure criterion is: For observations from n positions,

choose target position estimates and target velocity component

estimates ux and uy that make the sum of the squares of the

algebraic distance between the estimated positions and their

corresponding .-bserved bearing lines a minimum. From Figure 8,

it can be seen that the algebraic distance can be written as

di = [xt(i) - Xo(i)].cos ei - [yt(i) - yo(i)].sin ei. Because of

the requirement that the target move with constant course and

speed during the encounter, the number of independent estimates

is reduced from 2n to 4, ux I Uy and any two position

estimates xt(j), Yt(j)- In the following development, j = 1

and with i = 2,3, .-- ,n the remaining estimates are given by:

xt(i) = xt(l) + Ux-(ti - tl) and Yt(i) = Yt(l) + Uy.(ti - t]).

To determine "best" estimates of the target state parameters,

take the partial derivative of the sum S = Z (di)" with respect

to each of them. Then set the four partial derivatives equal to

zero. This creates four linear equations in xt(l), Yt(l), ux

and uy whose solution are the desired estimates xt(l), yt( 1 ),

u. and Uy. In matrix notation, the equations can be

represented by AX B where the elements of X are:

Xll = xt(l), x 2 1 = yt(l), x 3 1 = u. and x 4 1 = uy. A necessary

condition for a unique solution for X is that n Ž 4.

Otherwise, the determinant of A will be equal to zero. The

procedure can also be used if a target's course and speed are

constant and known and, in particular, if the target is

stationary so that ux and Uy both equal zero. In this case,
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since the number of unknowns is two, the number of linear

equations is also two and a necessary condition for a unique

solution is n Ž 2.

Now, suppose the observations are at positions and times

that correspond to the positions and times of an observer moving

on some constant course at some constant speed (including zero

speed). In this case, the observation position coordinates are

related by the following equations: xo(i) = Xo(l) + vx(ti - t1 )

and yo(i) = Yo(l) + Vy(ti - tl) where vx and Vy are the

required velocity components of the observer. Using these

equations of motion, the matrix equation AX = B can be

transformed to the matrix equation AX'= 0 where the elements

of the matrix X are related to the elements of the matrix X'

by the equations: x1 = xt(l) - Xo(l), X2 1 = Yt() -Yo
I I

X3 1 = ux - v. and x 4 1 =u - Vy.

Since the linear equations represented by AX 0 are

homogenous, they do not have unique solutions and consequently

neither do the equ-tions represented by AX = B. However, if

there is at least one observation whose time and position is not

determined by the above equations of motion, then the

transformation from X to Y' cannot be made, and in general a

unique solution for X can be found. If the observations are

made from a platform that is moving with a constant course and

speed, this condition can be achieved by either changing the

course, the speed or both prior to completing the observations.

Estimation models that describe bearing error as a random
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variable provide a basis for determining confidence regions for

point estimates. A model is developed in Reference 16 that does

this for either target bearing observations made from two or more

points simultaneously or for a target that is stationary relative

to the observation points.
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. III. Position Distributions That Change with Notion

Target motion models provide a basis for determining

position distributions that change with target motion. In this

sectioz., two classes of target motion models are considered. In

t!e first cl3ss, a target moves in a plane with a constant course

and speed. In the second class, a target moves in a plane but

its course or speed changes during the motion. Three members of

the first class are developed first. This is followed by a brief

discussioni of some models of the second class.

The First Motion Model: In the first model, X(0) and

Y(0), a f:azget's random position coordinates at time zero, have a

joint distribution that is circular normal with mean vector

(0,0) and standard deviation a. The joint distribution of the

velocity components Ux and Uy is circular normal with mean

vector (iUxUly) and standard deviation ou and the random

variables U- and U,, are independent of X(0) and Y(0). The

target coordinates at time t are given by X(t) = X(0) + Ux.t

ard \(t) = Y(0) + U y.t. Therefore, the random vector

[X(t),Y(t)] is a normal random vector and its characteristic

function is equal to the product of the characteristic functions

of tie random veetors [X(0),Y(O)] and [Ux.t,Uy.t]. This

implies that X(t) ai.d Y(t) have a circular normal

distribution ,.hose mean vector is (Cx.tUy't) and whose

variance is (oz + oa-t'). For a more complete discussion of the

basis for the above argument, see Refetrence 7
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The Second Motion Model: In the second model as in the

first, X(0) and Y(0), a target's random position coordinates at

time zero, have a joint distribution that is circular normal with

mean vector (0,0) and standard deviation a. However, in this

model, target speed u is known, but its course is equally

likely to have any value between 0 and 2w, so Ux = u-sin 4

and U y = u-cos 4 where 4 is a random variable with a uniform

distribution and 0 5 0 < 2w. In this model, only the random

variable 0 is required to determine the target's velocity. The

equation that is described belcw that determines the distribution

of the random position coordinates [X(t),Y(t)] can also be used

to determine it for the first model. It is based on the

following consideration: If a target's course and speed do not

change during its motion, the joint density function of its

position coordinates at some time t is determined by the

equation:

(23) fx(t),y(t)(x,y;t) = 1-_J.Ofx(O),y(O)((qs;O) fV,W(V,W) dvdw

where q = x - v-t and s = y - w-t and V = Ux, W = Uy, v = ux

w = Uy and t Ž 0. Equation 23 can be developed as follows:

To first order, fx(t),y(t)(x-y;t).6x.6y is the probability that

a target's coordinates are in an element of area Sx.6y and for

given values of v, w and t, target positions in an element of

area 6q.6s will be translated to an element of area 6x.6y

that is identical in form and size to 6q.6s. And so, to first

order, fx(o),y(o)(q,s;0).Sx.6y.fvw(u,v)-6v.6w is the

probability that the target's coordinates at time 0 are in an
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element of area 6q.&s that is located such that the target's

coordinates will be in the element of area 6x.Sy at time t

since x = q + v-t and y = s + w.t. And, to first order, the

sum of such probabilities for all pairs of values of v and w

is also the probability that the target's coordinates at time t

are in the element of area 6x.6y. In the limit after equating

the two expressions for this probability and cancelling the

common factor 6x.Sy, Equation 23 results.

With the velocity components in polar coordinates, the

integral of Equation 23 is a single integral over 0 and the

integrand of the integral is (1/2wa').exp[-(q2 + s1)/2a'].(l/27)

where now q = x - u-t-sin 0 and s = y - u-t-cos 0. The result

of the integration is:

(24) (l/27ra') exp(-[x' + y- + (u.t)')/20') 1 0 [(x2 + y1)i-u-t/a2]

where t Ž 0 and I0 indicates the hyperbolic Bessel function of

zeroth order. in Reference 6 for several values of t,

Expression 24 is plotted in terms of r = (x' + y2)i, the

target's range from the origin. The plot shows a limiting

characteristic of this distribution that can be indicated as

follows: First replace (x' + y')I by r in Expression 24.

Then, by first multiplying and then dividing the resulting

expression by exp(-r.u.t/a'), the following expression results:

(25) 1/(27Tc')exp(-[l/(2a')](r - u-t)')I0ki-u.t/a')exp(-r.u.t/o1 )

where t Ž 0. The second factor in Expression 25 is

proportional to the density function of a normal random variable

whose mean is u-t and whose standard deviation is o. And the
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last two factors are such that their product decreases sloutly as

a function of r. The consequence of this is that a plot of

Expression 25 against r for values of t greater than 4-u/u
4

has the appearance uf a normal density function. In particular,

this indicates that u-t in the exponent of the second factor in

Expression 25 can be viewed as the radius of an average furthest

on circle.

A target's random rectangular coordinates X(t) and Y(t)

and its random bearing O(t) and range R(t) trom the origin

are related by: X(t) = R(t) sin 0(t) and Y(t) = R(t) cos e(t).

By using these equations, Expression 24 can be transformed to:

(26) (1/27r)(r/2%G2 )eXp(_(r2 + (ut)*)/2a2)1O(rut/at)

which is the joint density function of the random variables R(t)

and e(t). The marginal density function of R(t) can be

obtained from Expression 26 by integrating this joint density

function over the possible values of O(t) which in radians is

over the interval 0 'to 2ff. Consequently, the marginal density

for R can be obtained from Expression 26 by multiplying it by

2w. Tabulated values of the cumulative distribution function

FR(r:t) for the marginal distribution of' R for the second case

are listed in Reference 17.

The Third Motion Model: In the third model, only a target's

maximum speed um is known, but a target's position at time zero

is known to be at the origin of the position coordinate system

and, after that time, to be uniformly distributed on a circular

disk of radius um t centered at the origin. This implies that
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(27) fx(t),Y(t)(x,Y;t) = i/(u*.t')

for t > 0 where x' + y, S ut.t' and that

(28) fR(t),e(t)(r,a) = r/(r .-*.t')

for t > 0 where 0 < r • Um-t and 0 5 a < 2n..

The range of values of r and a are independent and the joint

density function of R(t) and e(t) is equal to the product of

l/(2.i) and 2.r/(uA-t'). This implies that for the marginal

distributions with density functions: fR(t)(u) = 2.r/(ut.ts)

where 0 < r ! Um-t and fe(t)(a) = i/(2-i) where 0 5 a < 2.w,

the random variables R(t) and e(t) are independent, their

joint density function is given by Equation 28 and the joint

density function of X(t) and Y(t) is given by Equation 27.

These two marginal distributions can be achieved by choosing, at

time zero, a course e from the uniform distribution with

density function fe(a) = 1/(2-v) where 0 5 a < 2.w and a speed

U from the triangular distribution with density fuazc;tion fu(U)

= 2-u/ul where 0 : u • um.

Motion Models of the Second Class: In the second class of

motion models, a target's course or speed or both can change. In

general, a monte carlo simulation method is required in order to

determine a position distribution that is based on such a model.

As an example of cases in which the distribution can be described

analytically, see Reference 18 and Reference 19. As an example

of a case in which it can not, suppose a target's initial

position is described in terms of a number assigned to a

subregion in the xy-plane where the number assigned represents
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the probability that the subregion contains the target at an

initial time. In addition, suppose for each subregion a course

and speed distribution is determined by assigning numbers to

course and speed pairs where a number represents the probability

the target will have the course and speed at the initial time

given it is in the subregion at that time. Next suppose for each

course and speed pair there is a time distribution that

determines the duration of the course end speed pair and that the

time distribution is determined by a number assigned to each

discrete time point where the number represents the probability

that the tarqet's course and speed pair will be determined by a

new course and speed distribution. By extending this kind of

procedure and then implementing it in a monte carlo simulation,

one can generate complex position distributions that describe a

target's position at discrete time points.
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XIV. Position Distributions 7iat Change with Search

Suppose a target's position at some time is described

by a position distribution. Now suppose information becomes

available that a search has been conducted for the target and

that the target has not been detected. Or suppose the

information is that the target has been detected. In the first

case, negative information is available that can be used to

modify the position distribution. In the second case, positive

information is available that can be used to modify the position

distribution. In both of the cases, a target's position

distribution is assumed to be specified in terms of a set of

discrete probabilities where each probability corresponds to a

subregion of the region that contains the target and each is the

probability that the target is in that subregion.

Position Distributions and Negative Information: For a

region that contains a target aiid consists of n subregions, let

the event Si ( (the target is in the ith subregion). And let

the event C = {no contact). Then, given no contact in a search

of the region, the targets's position distribution can be

modified as follows:

(29) P(SiIC) P(CISi).P(Si)/P(C)

where i = 1,2., n and P(C) 1 P(CISj)-P(S.) with the sum

index j = 1,2, -.. ,n. Note that Equation 29 can be obtained

by using Bayes theorem. To illustrate how Equation 26 might be

used, suppose that a search in a subregion is considered to be a

random search and that the sweep width of detection system
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against the target depends on subregion being searched. For this

case, let Ai be the area of the ith subregion and let Wi be

the sweep width in that subregion. Then, given no contact in a

search of a subregion, P(CISi) = exp[-(Wi-li)/Ai) where ii is

the track length of the searcher in the ith subregion. Given

values for P(Si), Wi/Ai and ii for i = 1,2, .-- ,n, a

position distribution can be determined that has been modified by

the negative information.

Position Distributions and Positive Information: In the

case of positive information, the event C = (a contact) occurs.

This event is the union of two mutually exclusive and exhaustive

events: Tc = {a true contact) and Fc = (a false contact).

Relative to the Venn diagram of Figure 1, the event Si defined

above corresponds to H1 , C corresponds to DI, Tc

corresponds to (D1 n H1 ) and Fc corresponds to (DI n H0 ).

For generality, suppose true contacts do not localize a target to

a single subregion. Then after a search of a region that has

resulted in a contact, the target's position distribution can be

modified as follows:

(30) P(SiIC) = P(SiITc)-P(TcIC) + P(SilFc).P(FcIC)

where i 1,2, - ,n since Tc = Tc n C, Fc = Fc n C and

P(SiIC) (P[(Si n Tc) + P(Si n Fc)])/P(C). The probability

p = P(TcIC) has been called the credibility of the contact. In

terms of p Equation 30 becomes:

(31) P(SiIC) P(SilTc)-p + P(SiIFc)I - p).
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For the model, P(SiITc) can be determined by the coverage

characteristics of the detection system that is used to make the

contact. In particular, P(SiITc) = P(TcISi).P(Si)/P(Tc) where

P(Tc) = Z P(TclSj)'P(Sj) and the sum index j = 1,2, --- ,n.

Then, using the correspondence between the events Si and H1

and the events Tc and (D1 n Hl), a definition for P(Tc0 Si)

is P(TcISi) = (Pd)i where (Pd)i is an average probability of

detection over the ith subregion. Note, if C = Tc, then p = 1

and Equation 31 can be written as P(SiIC) = P(CISi)/P(C) where

i = 1,2, -.- ,n and P(C) = 1 P(CISj).P(Sj) with the sum index

j = 1,2, ..- ,n .. ich is analogous to Equation 30. In one

positivc information model, P(SilFc) = P(Si) (false contacts

supply no information about a target's location), and p is

determined subjectively based on factors associated with the

detection system used to make the contact. The probability

determined by 1 - p has been called the false alarm

probability. However, it is not the probability pf = P(D 1 1H0 ).

Since 1 - p = P(FcIC), it is the probability P(H 0 1DI).

This approach could also be used to modify a position

distribution given negative information. To do this, note that

the event Z is the union of two mutually exclusive and

exhaustive events: the event T-c = ja true no contact) and the

event FU = (a false no contact). Relative to the Venn diagram of

Figure 1, C corresponds to D0 , T-c corresponds to (Do n H0 )

and FU corresponds to (Do n H1 ) and the countrpart of

Equation 31 is:
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(32) P(SilC) = P(SitT').p + P(SiIF;)-(l - p)

where p = P(T..IC). Relative to the Venn diagram of Figure 1,

p = P(DoIH0 ). In keeping with the choice for P(Si!Fc) above,

one could choose P(SiiT-c) = P(Si) and P(SiJFZ) could be

determined by the coverage characteristics of the detection

system. In particular, P(SilFE) = P(F•tSi)-P(Si)/F;j) where

P(Fi) = Z P(FEISj).P(Sj) and the sum index j - 1,2, -. ,n.

Using the correspondence between the events F5 and Do n H1

one can write P(FZISi) = 1 - (Pd)i"

Both in the case of this procedure for negative information

and the procedure for positive information, (Pd)i can be viewed

as a measure of the specified performance of a detection system

and both p and p can be vieweA as measures of the degradation

in its specified performance do to various operational factors.

In particular. for p = 0, the expression for P(Silc) is the

same for the two negative information procedures if P(C1Si) is

determined in the same way for both cases. In the view just

expressed, this implies that the first procedure applies to a

search in which a detection system is operated so that it

achieves its specified performance. In the case of the positive

information procedure, if p = 1, then the expression for P(SiIC)

is the same as that which can be obtained from

(33) P(SitC) = P(CISi).P(Si)/P(C)

where P(C) = M P(CISj)-P(Sj) and the sum index j = 1,2, -.. n

if P(CJSi) is determined in the same way for both cases.
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XV. Search Models and Search Theory

Search theory provides a basis for determining optimal

search plans for a target whose motion and location are

determined within some bounds. Here, an optimal search plan is

one for which the probability of finding a target within a given

length of time is a maximum, the expected time to find a target

is a minimum given the target is found or a search plan for which

some other optimal search criterion is satisfied.

Search theory results are based on models of the search

process. To the degree that a search model describes a search

process, an optimal search plan for a target that is based on the

search model should provide guidance for the development of an

operationally feasible search plan. However, because of the

limitations of analytical search models, an optimal search plan

that is based on an analytical search model may give only initial

guidance in this regard. The optimal a!Ch plansU that are

described below illustrate this. The search plans are based on

the random search model. Because of this, the requirement on the

location of search track segments is not realizable and the time

to resolve false alarms is ignored.

Optimal search plans based on se models implemented

through a monte carlo simulation are not considered here.

However, with sufficient information, such plans have the

potential of being both implementable and more optimal in a real

sense than an optimal search plan based on an analytical search

model.
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Three Optimal Search Plans: The three optimal search plans

differ through their definition of optimality. However, each one

is based on the following search model: A target is fixed at

some point in a region that consists of n subregions. A search

in a subregion is a random search in the sense of the definition

in Section X and a searchers sweep width there is a constant.

In addition, a search of a subregion will not detect a target

which is in another subregion. To determine a plan, let

Si = {the target is in subregion i) for i = 1,2, -. ,n and

let Pi = P(Si) be the prior probability that the target is in

the ith subregion. Let Wi be the sweep width in the ith

subregion. Let 6i = Ai/Wi where Ai is the area of the ith

subregion and 6i is the expected track length to find the

target by a search of the ith subregion given the target is in

the ith subregion, a characteristic length. The probability P

that the target will be detected by a random search is given by:

(34) P = E [1 - exp(-li/Si)].pi

where the sum index i = 1,2, - ,n and li is the track

length of the search in the ith subregion.

The first optimality criterion is: Choose li so that P

is a maximum subject to the two constraints: 1. 1 = Z li and

2. li Ž 0 where the index i = 1,2, --- ,n. Determining this

choice is a nonlinear optimization problem whose solution is

given in Reference 20. It is:

1i/6i = lin(pi/i) - L(k) i = 1,2, --. , k
(35)

i = 0 i = k+l,k+2, ." ,n
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where L(k) = (1/E6j).E[6j-ln(pj/bj)] + l/Z6j and the sum index

j = 1,2, -- ,k, where the subregions are relabeled so that the

following order relation holds: Pl/ >P > > -. > Pn/6n and

where k is chosen so that for k+l the solution for ik+1

using L(k+l) is either negative or zero.

The second optimality criterion is: Choose ii so that P

is a maximum subject to the two constraints: 1. c = E ci and

2. ci Ž 0 where the index i = 1,2, .. ,n, ci = ki-li is the

cost of the search in the ith subregion and ki is the cost per

unit track length in that subregion. For this criterion, the

solution to the corresponding nonlinear optimization problem can

be obtained from Equation 35 by replacing 6i by ei = ki.Si

and labeling the subregions so that pl/ei > P2/Ei > -. > Pn/Ei-

The basis for this can be seen by replacing li/ 6 i by its

equivalent ci/ei in the exponential term in Equation 32.

The third optimality criterion is: Choose li so that the

expected utility of finding the target is a maximum subject to

the two constraints: 1. 1 = Z Ii and 2. ii Z 0 where the

index i = 1,2, --- ,n. For this criterion, the solution to the

corresponding nonlinear optimization problem can be obtained from

Equation 31 by replacing Pi by qi where qi = ui'Pi and ui

is the utility of finding the target given it is in the ith

subregion. And, in addition, labeling the subregions so that

ql/&1 > q2/62 > ... > qn/6n. The basis for this can be seen by

multiplying the summation term in Equation 34 by u i so that
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the resulting equation gives the expected utility of finding the

target with the search.

Equation 35 can be used to determine an order of search for

the subregions which will effectively minimize the expected track

length required to detect a target given it is detected. To do

this, divide the available track length 1 into units small

enough so that with a single unit only the I"t subregion would be

searched. Then allocate one unit to the search of the 1 st

subregion. If the search is unsuccessful, determine the optimum

allocation for two units. Then search with a second unit so that

the first search with the first unit plus the second search with

the second unit satisfy the optimum allocation for two units. if

the search is unsuccessful, continue in this fashion until either

the target is found or all the track length is expended. That

this allocation order will effectively minimize the expected

track length required tc detect a target given it is detected can

be argued as follows: Let L be the track length at detection,

let iu be a unit of track length and let n be the number of

units. Then the value of the probability P(L 5 i-lu) that the

target will be detected on or before the ith step of the scarch

for the given allocation order will be greater than or equal to

its value for any other allocation order with the same allocation

step size. Since the value of P(L S 1) will be equal to its

value for any other allocation order of the optimum allocation

and since P(L • i-luIL • 1) = P(L : i-lu)/P(L : 1), the value of

the distribution function FL(i'lujL < 1) = P(L : i-luIL 5 1)
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will be greater than or equal to its value for any other

allocation orler. This implies that the expected track length

given detection E(LIL 5 1) = 7 [1 - FL(i-lujL S 1)] where the

sum index i = 1,2, --- ,i is effectively a minimum for the

given allocation order. A search based on the optimum allocation

given by Equation 35 and the given allocation order is

equivalent to the following search: After an allocation of track

length l and an unsuccessful search, new values for P(Si) are

calculated using Equation 29 and then Equation 35 is used with

these new values to determine the next optimum allocation. A

discussion of this procedure is given in Reference 6. And an

example of its application is given in Reference 21.

Equation 35 also defines an optimal search plan for a

detection system that searches beams and can be described by

Equation 33 by replacing 11 by ti wherc ti is the time the

ith beam is searched and by replacing Si by ii where Ti, a

characteristic time, is the expected time to detect the target by

a search of the ith beam given the target is in the ith beam.

For a more extensive discussion of search theory and its

application to military operations research, see Reference 22.
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